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Abstract—Soft robots, with advantages of high adaptability
to the environment, relatively easy and simple fabrication pro-
cess as well as promising performances, have been thoroughly
investigated and widely applied lately, the superiority of which
has been proved in areas such as medicine, industry, daily life
service and so on. However, it is still challenging to realize stable,
efficient, and accurate control of soft robots due to their high
compliance and hyper-redundancy. One of the main causes is the
difficulty in building an accurate model for analyzing the relation
between control input and output (force and/or deformation). In
this paper, we proposed an intuitive approach for solving inverse
kinematics of soft manipulators, where the relation between
actuation pressures and end-effector motions was established
by analyzing the sampled workspace from a real platform. A
quantitative measurement between control accuracy and com-
putational efficiency was performed and applied in achieving a
reasonable balance in between. Based on the proposed approach,
real-time motion tracking of a self-developed soft manipulator
was implemented on Raspberry Pi taking less than 10 ms and
the tracking error was 3.35% of the full workspace in average,
comparable to the system capability. Our approach has validated
the feasibility of fast searching in finding inverse kinematics
solutions with satisfactory accuracy and simple implementation
process and demonstrated its potential in working as the basis
in advanced control.

Index Terms—Modeling, Control, and Learning for Soft
Robots

I. INTRODUCTION

IN the past few decades, conventional manipulators com-
posed of rigid links, have achieved great success especially

in manufacturing industry, where precision, repeatability as
well as efficiency are highly demanding [1]. Most industrial
manipulators can be modelled and controlled under a set
of control algorithms [2], [3]. However, they become less
appropriate when interacting with humans and environment,
where soft robots become advantageous due to their high
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adaptability [4]–[8]. Nevertheless, the nonlinearity introduced
from the inherent compliance of soft manipulators brings
difficulties in modelling and control and makes conventional
modelling methods suited for rigid ones inapplicable. Existing
methods for modelling and control of soft manipulators can be
divided into two categories, model-based [9]–[12] and model-
free approaches [13]–[15].

Model-based approaches can be further distinguished ac-
cording to whether the model is derived based on the steady
state assumption or coupled with dynamic formulations [16],
[17]. Constant curvature (CC) assumption has been widely
applied in kinematics analysis of soft manipulators [18]–[21].
It works well when external force effects can be ignored and
the manipulator itself is designed and fabricated symmetri-
cally and uniformly but appears inaccurate under high load
and high-speed dynamic process [16], [22]. To improve the
accuracy, models based on CC assumption introducing varied
curvatures have been developed [23]–[25], however, consider-
ing the increase in their computational cost, the improvements
of accuracy are not considerably enough. To take the effect
of external forces into consideration, dynamic equations can
be derived based on Lagrangian formulation or Euler-Newton
equation, where the corresponding items can be obtained by
analyzing the specific manipulators and simplifications were
usually required considering the complexity, which might
cause inaccuracies [17], [26], [27]. Meanwhile, beam theories
were also used to derive dynamic equations [28]–[31], where
solving the partial differential equations in real-time has be-
come the key step [32], [33]. Similarly, computation of the
updated node positions at each time step is needed in Finite
element model (FEM)-based methods [34]–[36]. Meanwhile,
the computational power is highly demanding in both methods.

Model-free approaches, on the other hand, are usually data-
driven combined with machine learning strategies and have
played an important role in soft robots control, especially for
the ones with highly nonlinear properties, whose models of
are hard to build [37]. However, they usually require a large
set of data and might suffer from uncertainty of stability and
convergence [16], [17], which has somewhat affected their
performances.

The difficulty of establishing an accurate model of soft
manipulators and the dilemma of choosing accuracy over
computational efficiency or otherwise have motivated us to
investigate on analyzing soft manipulators with less reliance on
models. In this article, we focus on static kinematics analysis
of soft continuum manipulators, where an intuitive approach
based on workspace analysis was proposed including three
steps as workspace sampling, gridding and searching (WSGS).
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Fig. 1. The proposed WSGS approach. (a) I: Workspace sampling step. II: Workspace gridding step. III: Workspace searching step, with sub-steps presented
sequentially. (b) Position gridding in Cartesian Coordinate System. (c) Orientation gridding in Spherical Coordinate System.

The proposed WSGS approach has built a bi-directional corre-
spondence between control input (pressure) and output (end-
effector position and orientation) by combining a simple model
and a straightforward data-driven strategy. It has been proved
that, for our soft manipulator, sparse sampling and gridding
is sufficient and thus rapid searching can be realized. Addi-
tionally, the variance in control results with different factors
applied in WSGS steps, provides us with control adaptability
when facing different requirements or under varied conditions.
Meanwhile, different from learning-based methods, the data
collected for analysis provides us a concrete idea of the
workspace, therefore the results can still be completed and
achieve certain accuracy even with sparse sampled data. With
its simple implementation process, promising performance as
well as configuration-independent feature, the proposed WSGS
approach could be applied in a wide range of soft manipulators

and become the basis of several advanced control algorithms.
Conditions with external load, although have not been included
in this work, can be further considered by collecting data
points under different payloads or applying sensory feedback.

The main contributions of this paper includes:

1) An intuitive approach for modelling and control of
soft continuum manipulators was proposed, where we
utilized the inherent compliance of soft manipulators
to simplify the kinematic analysis based on workspace
mapping.

2) The proposed approach proved the feasibility of sim-
plifying the inverse kinematics problem to an intuitive
space searching problem.

3) A quantitative relation between control accuracy and
efficiency was established based on our workspace map-
ping strategy and it works either in favor of accuracy or
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Fig. 2. Workspace analysis and mapping strategies. (a) Plot of running time versus size of potential solutions with different workspace sampling strategies.
(b) Histograms of positioning errors under different workspace sampling strategies. (c) Plot of running time versus size of potential solutions with different
workspace gridding strategies. (d) Workspace in 3D with data points applied for experiments comparing two searching strategies. (e) Plot of running time
versus size of potential solutions with different workspace searching strategies. (f) Plot of running time versus distance between target and selected poses
computed by the algorithm for different searching strategies.

Fig. 3. Workspace plot from different views. (a) Workspace in 3D. (b) Workspace plot on xy plane. (c) Workspace plot on xz plane. (d) Workspace plot on
yz plane. Black dots are the data collected from real platform, and red dots are the data simulated based on PCC assumption. The graphics at the bottom left
side of each figure are the envelope shapes of corresponding data points distributions.

efficiency depending on the real situations. The proposed
method has been validated in real-time motion tracking
test, where sparse sampling was verified to be sufficient
to achieve satisfactory accuracy in a fast searching
manner.

The proposed approach was validated on our self-developed
soft manipulator, which was based on our previous work [38],
[39] and has been redesigned both mechanical and control
wise. This paper includes five sections. Apart from the first
introduction and the last conclusion section, the implementa-
tion of the proposed approach is described in section II, while
the workspace mapping strategies and analysis are presented
in section III. The results of the system capability and a real-

time motion tracking test will be presented in section IV.

II. KINEMATIC ANALYSIS OF SOFT MANIPULATOR BASED
ON WORKSPACE MAPPING

The detailed implementation of the proposed method in-
cludes three steps as shown in Fig.1 combined with a simple
model based on PCC assumption as described in below.

Based on the Piece-wise Constant Curvature (PCC) assump-
tion [19], only three configuration parameters are necessary
to define the kinematics of unit piece, including the bending
angle α , describing the radian angle of the corresponding arc,
rotational angle β , determining the plane where the segment
bends, and the central arc length l.
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Fig. 4. Soft manipulator system. (a)∼(d) Self-developed soft manipulator, with unit segment and modular actuator presented separately. (e) Imaging system.

A. The Proposed WSGS Method

• Workspace sampling
Workspace sampling was performed in terms of joint
level, by selecting values of configuration parameters as
α,β , l within certain range. The sampled data points
for each parameter were spaced by the same value.
Considering the symmetrical feature of our manipulator
and to shorten the process of data collection, only the
first quadrant of workspace was taken into considera-
tion. There are two individually controlled segments of
our manipulator, therefore, values for six parameters as
(α1,β1, l1,α2,β2, l2) need to be assigned.

• Workspace gridding
Workspace gridding can be separated as gridding for
end-effector position and for orientation as shown in
Fig.1.(b) and (c). Positions of end-effector can be rep-
resented by points in three-dimensional space, expressed
by their Cartesian Coordinates. Gridding on positions is
therefore straightforward, by directly dividing the three-
dimensional workspace based on its Cartesian Coordi-
nates. The closeness of two points can therefore be
measured by their Euclidean distance.
Gridding on orientations, on the other hand, requires two
steps of coordinate conversions in advance. Firstly, a
coordinate conversion of orientation from axis-angle to
Spherical Coordinate expression needs to be performed.
For each orientation expressed as a point in Spherical
Coordinate as (r,θ ,ϕ), the unit vector pointing from the
origin to the point determined by polar angle θ and
azimuth angle ϕ represents the rotational axis and the
distance between the origin and the point determined by
radial distance r corresponds to the rotational angle in
radians and is normalized by dividing it with 2π , the
magnitude of which is therefore constrained between 0
and 1. The second conversion from Spherical Coordinates
to Cartesian Coordinates will be needed when computing
the Euclidean distance in between for measuring the
closeness between two orientations.
Considering the equivalence of two orientations with
rotational axes in opposite directions and rotational angles
with opposite signs but the same absolute values, the full
orientation workspace can be simplified to half of the

sphere, where the polar angle θ is in the range [0,π),
azimuth angle ϕ is within [0,π), and radial distance r is
limited to [0,1), corresponding to the orientation, whose
rotational axis lies within half of the sphere, and the rota-
tional angle varies within [0,2π). Gridding on orientations
is therefore based on the orientation workspace expressed
in Spherical Coordinates, by dividing the polar angle, the
azimuth angle as well as the radial distance accordingly.
The closeness between two poses, when position and ori-
entation are both considered, is measured by the weighted
combination of normalized Euclidean distance between
positions and orientations respectively.

• Workspace searching
For any given target pose, first step is to search the grids
which it lies in. the next step is to search all the points
inside those grids, and the closeness between the points
and the target pose will be evaluated and compared. If no
point is found, searching adjacent grids will be performed
until either at least one point is found or the whole
workspace has been searched. The adjacent grids mean
the grids next to the given grid including the grids on
its left, right, up, down, forward and backward. Once the
closest point is found, its corresponding command will
become the solution. Otherwise, the soft arm remains at
its previous pose.

B. Workspace Mapping Strategies

Different strategies can be applied in each step for
workspace mapping and they will affect the control results
by changing the corresponding computational efficiency and
positioning accuracy.

It is intuitive that the denser the sampling is, the better
the accuracy should be, however, larger the data size is,
slower the searching process would be. The results presenting
computational efficiency of different sampling strategies are
shown in Fig.2.(a), where the data sizes vary from 144 to
125000. It was found that the running time reduced to within
10 ms with no more than 1000 data points while achieving
almost 1000 ms with data size larger than tens of thousand.

The positioning accuracy was measured by the statistic
results of tracking errors from 2000 randomly picked data
points as shown in Fig.2.(b), where the histogram shows
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Fig. 5. Control scheme of the proposed system, where the given target pose is (xt ,yt ,zt ,qwt ,qxt ,qyt ,qzt), and configuration parameters are (αt ,βt , lt), manipulator
parameters are represented as (R,θi, l0,C1) as described in our previous work [38], [39].

the distribution of tracking errors of each sampling strategy.
We evaluated the positioning accuracy of each case based
on the tracking error that has the largest counts. The larger
the data size is, the higher its positioning accuracy becomes.
To determine workspace sampling strategy, the efficiency,
positioning accuracy as well as the system capability need to
be considered. To achieve a comparable repeatability accuracy
of the system, we chose a data size of 4932 for experimental
validation, the positioning accuracy of which lies between 5
to 10 mm and the running time should be less than 45 ms.

Gridding strategy affects the efficiency by changing data
size in certain grids. In dense gridding, data points in each
grid will be less than those with sparse gridding. Therefore,
it reduces the time of searching for the closest data point
in one grid, while increasing the time of searching for the
right grid. Specific relation in between can be inferred from
Fig.2.(c), where multiple tests have been performed with
different gridding strategies as splitting the workspace in x,y,z
directions by 3,3,2 grids in gridding strategy I, and by 4, 6,
5 grids in strategy II, and by 10, 10, 10 grids in strategy III,
respectively. Based on the results of running time, we chose
gridding strategy II for implementation with running time no
more than 50 ms.

As mentioned above, the searching strategy we applied
is quite straightforward by sequentially comparing closeness
between each data point and the target pose in the grid been
found. However, it may lead to inaccuracies when the target
point is close to or on the edge of a grid, because the nearest
data point may not be in the grid where the target is located,
but in the grid next to it. One solution is to search not only
the grid where the target is located but also the grid next to

it, which will increase the number of data points evaluated
and thus the time spent on the search. We simulated this
situation by intentionally setting the target pose close to the
edge, as shown in Fig.2. (d). The results are consistent with
our intuition, but how long the run time is and how large the
error is depends on the specific data point, as can be seen from
Fig.2. (e) and (f). Therefore, we suggest that a prediction can
be made in advance about which part of the working area the
target is located in. If it is located near the edge of the grid,
then it is necessary to search all adjacent grids beyond the
one it is on, otherwise only data points within that grid can
be searched.

III. WORKSPACE ANALYSIS

Workspace plot under different cases is shown in
Fig.3.(a)∼(d), where envelopes shapes can be found at the
bottom left side. The similarities of these envelopes have vali-
dated our workspace sampling results as well as the feasibility
of PCC assumption on our arm. The distributions of data points
appear to be radial symmetric, which is in consistent with the
uniform design of our manipulator. Meanwhile, the differences
between distributions have revealed the self-weight effect, and
it becomes larger when the arm deviates more from the center,
which is in correspondence with the increase of load relative
to the base.

Our proposed approach is capable of turning the kinematics
analysis and motion planning into an intuitive space division
problem, based on the workspace plotted via data from the real
platform. To reach or to avoid some points in space, it becomes
a matter of figuring out in which section of the workspace
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Fig. 6. Repeatability performance test and results. (a) Schematic showing configurations of trial 1 and 2 bending on different planes. (b)∼(e) Pictures of
different configurations for repeatability test. (f) Repeatability test results of positions. (g) Repeatability test results of orientations.

should or should not the arm be. And in control algorithm,
it will be simplified to a space searching problem for both
position and orientation. It becomes extremely useful when it
comes to problems such as avoiding singularity or obstacles.
Instead of adding constrains or tuning parameters in algorithms
based on optimization techniques, it would be one simple step
in our algorithm to just remove certain grids during searching
process.

IV. EXPERIMENTAL VALIDATION

A. Experimental Apparatus

The soft manipulator used for experimental validation was
based on our previous work [38], [39], and we have updated
both the mechanical design and control of this version. Differ-
ent from the previous design with one segment composed of
six bellows, here a modular actuator design was applied with
origami structure [40] as shown in Fig.4.(c). The manipulator
we developed weighs around 2.5 kg with a cross section

radius around 100 mm and a variable length ranging from
100 mm to 500 mm. It consists of six segments labeled by
s1 ∼ s6 as shown in Fig.4.(a) and (b). Six identical actuators
are evenly distributed in each segment as shown in Fig.4.(d),
each with a diameter as 58 mm. A pneumatic platform with
54 independent channels was developed, and here only 36 of
the channels were used (6 actuators for each segment and 6
segments in total). The embedded control platform weighs
around 10 kg with a size of 500 mm x 400 mm x 200
mm as shown in Fig.4.(a). For our algorithm validation, to
cover degrees of freedom of both positions and orientations
without losing generality, only two sections were individually
controlled, each consists of three segments, labeled as Section
1 and 2 in Fig.4.(b).

The control scheme of our soft manipulator is shown in
Fig.5, where pressure sensors are embedded in each actu-
ator for feedback control, and the inner pressure control
loop is similar in our previous work [38], [39]. Once given
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Fig. 7. Motion tracking test results. (a) Running time versus distance between target position and origin for different tracking points. (b) Distance between
origin and different data points versus distance between target and origin point. (c) Data points plotted in 3D. (d) Overlapped pictures of motion tracking test,
where each target point and positions of the corresponding ball are labelled with numbers.

a target pose, including position (xt ,yt ,zt) and orientation
(qwt ,qxt ,qyt ,qzt), the configuration parameters for each seg-
ment (αt ,βt , lt) will be determined by the proposed WSGS
approach. The pressure command pt of each actuator will then
be computed based on least squares method as described in
[38], [39].

The imaging setup is shown in Fig.4.(e), where the position
and orientation of the end-effector was computed via positions
of four balls attached to it by a depth camera (Intel RealSense),
and the computational steps include the synchronization of
four balls’ positions, mapping from camera base frame to arm
base frame and synchronization with configuration command.
Considering the identification error during tracking, the results
were computed by averaging combinations of three balls
among four.

1) System Capability Test by Measuring its Repeatability:
The system capability that we care about mostly is its re-
peatability as the ability to sequentially position to the same
target. To measure the system repeatability, we actuated the
manipulator to reach eight different positions as shown in
Fig.6.(b) ∼ (e), and four of them are bending with the same
angle but on different planes as shown in Fig.6.(a). Each trial
was repeated ten times. The results are presented in Fig.6.(f)
and (g), where the position deviation is between 3 to 9.14
mm (0.75% ∼ 2.285% of full workspace), and the orientation
deviation varies from 7.49° to less than 0.1°. It also appears
a tendency that the closer the end-effector is to the initial
posture, the smaller the deviation and therefore the higher the
repetition accuracy. It is consistent with an intuition that to
reach a position further from the initial posture requires more
pressure and more force to balance the effect of gravity, and
therefore the system becomes less stable than if it were held
in a position that requires less effort.

B. Motion Tracking Test

A real-time motion tracking test was implemented on our
self-developed manipulator, where seven points were tracked
in space and repeated three times for each test as shown in
Fig.7.(e). The position tracking error measured by distance
between real and target point was 13.40 mm (3.35% of
full workspace) in average as shown in Fig.7.(b)∼(c), which
is comparable to the repeatability accuracy, and therefore
validated our control method.

The whole algorithm was implemented on Raspberry Pi
(Raspberry Pi 4B with 4G RAM, Quad core Cortex-A72 64-bit
SoC at 1.5GHz and Ubuntu 20.04 installed.) and the running
time of finding the solution for target pose tracking was within
10 ms for each test as shown in Fig.7.(a), the fast speed of
which proves its potential of working as a fundamental for
advanced control algorithm.

V. CONCLUSIONS

In this work, an approach for solving inverse kinematics
of a soft manipulator was proposed, based on which, a real-
time motion tracking test was implemented and validated on
a real platform. The approach is performed in three steps
including workspace sampling, gridding and searching. By
visualizing the workspace of the soft manipulator, complicated
motion planning problem can be turned into an intuitive and
straightforward space searching problem. The control accuracy
and computational efficiency are known as two contradictory
issues that favoring one means compromise to the other and in
most cases, it cannot be changed, and choices need to be made
once certain method has been selected. Based on our proposed
method, the quantitative measurement of the relation between
control accuracy and efficiency has enabled us the room for
regulation and it can also work as a guidance for different
situations.

Compared with other searching-based approaches, where
efforts are needed in exhausting all the possible states of
the system, it has been shown that a sparse sampling with
order of thousands of data points should be sufficient since the
inherent compliance of soft manipulators naturally constrains
its accuracy. Therefore, what really matters is to make the
sampling density match with the system capability as well as
taking the real application scenario into considerations. As a
result, fast searching can be realized and based on our motion
tracking tests, it takes less than 10 ms to find a solution on
Raspberry Pi and can therefore become the fundamental of
further advanced control. It was validated that the average
tracking error of our motion tracking test is around 13.40
mm (3.35% of full workspace), which is comparable with the
system capability of holding still at one position as maximum
±4.57mm (1.14% of full workspace).

For further development, learning techniques can be applied
based on the proposed method to refine the results or dealing
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with dynamic tasks considering external loads or for manipu-
lators with hyper-redundancy.
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