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Abstract

Compared with rigid robots, soft robots are inherently compliant and have advantages in the tasks requiring
flexibility and safety. But sensing the high dimensional body deformation of soft robots is a challenge. Encasing
soft strain sensors into the internal body of soft robots is the most popular solution to address this challenge. But
most of them usually suffer from problems like nonlinearity, hysteresis, and fabrication complexity. To endow
the soft robots with body movement awareness, this work presents a bioinspired architecture by taking cues
from human proprioception system. Differing from the popular usage of smart material-based sensors em-
bedded in soft actuators, we created a synthetic analog to the human muscle system, using paralleled soft
pneumatic chambers to serve as receptors for sensing body deformation. We proposed to build the system with
redundant receptors and explored deep learning tools for generating the kinematic model. Based on the pro-
posed methodology, we demonstrated the design of three degrees of freedom continuum joint and how its
kinematic model was learned from the unified pressure information of the actuators and receptors. In addition,
we investigated the response of the soft system to receptor failures and presented both hardware and software
level solutions for achieving graceful degradation. This approach offers an alternative to enable soft robots with
proprioception capability, which will be useful for closed-loop control and interaction with environment.

Keywords: proprioception, soft pneumatic chamber, receptor, pressure information, kinematic model, receptor
failure

Introduction robots such as the octopus-inspired gripper’ and the ele-
phant’s trunk like robot manipulator.

PROPRIOCEPTION IS A CRITICAL bodily neuromuscular To endow soft robots with body movement awareness, de-

sense that enables human to perceive posture of limbs in  ciding the sensory component is a key step. Depending on the

the space and helps to control body movements.'> Equipping  morphology of the soft robots and the task requirements, di-
soft robots with comparable proprioception systems is also  verse potential sensing technologies were developed over the
essential for closed-loop feedback control and interaction with ~ past years.”™ Embedding soft strain sensors into the soft ro-
environment. But due to the unique compliant nature, itis very  bots was one of the most popular solutions for directly mea-
challenging to sense the high dimensional deformation of soft  suring the body deformation of the soft robots. Stretchable
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resistive and capacitive materials were commonly
used for building the strain sensors. However, most of these
soft strain sensors showed nonlinearity and suffered from
hysteresis. Some researchers proposed to fill the soft elasto-
mers with conductive liquids for proprioceptive sensing.'¢~'8
But these sensors filled with conductive liquids usually had
complex structures and might have the problem of leakage.

Recent researches proposed to incorporate complicated
sensors within the soft actuators in a tightly integrated way by
leveraging the promising and low-cost three-dimensional (3D)
printing technologies. One of the noteworthy examples is a soft
somatosensitive actuator constructed with three 3D-printed
elastomeric matrices, which were filled with conductive inks
for sensing the curvature, inflation, and contact."® Yang et al.
proposed to simultaneously integrate pressure and position
sensors into a soft actuator using 3D printing.”® Hainsworth
et al. also produced a sensor-actuator system entirely using
multimaterial 3D printing tools.>' Scharff et al. proposed a
color-based sensing approach to reconstruct the shape of a
bellows actuator, which was fabricated with multicolor struc-
ture by a multimaterial 3D printer.**

Some other soft sensors embedded with fiber Bragg grat-
ings™ %> and optical waveguides”®* were also reported. These
options could provide sensitive deformation measurement while
they might affect the compliance and the dynamics of the system.
An inductance-based sensor was recently developed for mea-
suring the orientation of bellows driven continuum joints.*’
Although the inductance-based sensor system was not bulky and
off-the-shelf, it was susceptible to electromagnetic interference.
Festo corporation demonstrated a bellows driven continuum arm
with whole kinematics awareness, which was achieved by an
optical shape sensor placed along the arm’s longitudinal axis.*
External vision techniq3ues were also leveraged for sensing the
shape of soft robots,’* 2 yet they were restricted by the bright-
ness of light and the delay of the visual sensor.

In addition, some studies proposed to build soft sensors
based on deformable chamber structures and off-the-shelf
pressure sensors. Tawk et al. evaluated four types of 3D-
printed soft pneumatic sensing chambers and, respectively,
demonstrated their abilities in sensing touch, bending, tor-
sional, and rectilinear deformation.>> In another work carried
out by Tawk et al., a soft robotic finger was integrated with
soft pneumatic sensing chambers for detecting the joint po-
sition and the touch at the fingertip.** Similarly, Yang et al.
also fabricated a soft pneumatic sensor for measuring the
contact force and curvature of a soft bending actuator.> The
soft pneumatic sensor was composed of a gas pressure sensor
and an air chamber made of silicon rubber. There also has
been an attempt to construct tactile array sensors by casting
miniature barometric sensor chips in rubber.*® The above-
mentioned examples showed the versatility of pneumatic
sensing technology, which we also applied in this work.

Decoding the raw sensor readings into the system states is
another critical step when the sensor hardware has been inte-
grated in the soft system. Mapping from the sensor readings to
the system states based on analytical models is usually difficult
due to the fabrication error and the complex dynamics of the soft
systems. Recent studies in the field of soft robotics have ex-
plored machine learning methods for solving the challenges of
modeling.*” For examples, Kim et al. handled the noise of the
sensor output with probabilistic modeling and characterized the
hysteresis using a Bayesian network.*® Han et al. implemented a
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hierarchical recurrent sensing network to calibrate the soft
sensors.”” Fang et al. applied both feed-forward neuronal net-
work (FNN) and long short-term memory (LSTM) to learn the
forward and inverse kinematics of a soft continuum joint and a
planar finger manipulator.** Van Meerbeek et al. trained a
multioutput regression model for simultaneously estimating the
bend and twist angles of an elastomeric foam sensor system.*'

To explore the best mapping between the sensor data and
the 3D shape of pneumatic soft robots, Scharff et al. tested
different machine learning models, including a LSTM net-
work, a FNN, a support vector regression model, and multi-
variate linear regression model.*> A deep convolutional
neural network was used for learning the patterns in the raw
data of the sensor alrlray.43 Recurrent neural network (RNN)
architectures were also used in some studies to estimate the
system states from time series data.***> Loo et al. adopted a
RNN-based adaptive unscented Kalman filter to estimate
both the internal and external state of a soft pneumatic fin-
ger.*® Sakurai et al. proposed to use an echo state network to
estimate the length of McKibben pneumatic artificial muscles
from the real time pressure sensor data and system dynam-
ics.*’ Soter et al. trained a three-layer deep LSTM type of
RNN for reconstructing the deformation of soft interface
from multidimensional time serial sensor data.*®

Concept of proprioception scheme for soft robots

This work takes cues from the human proprioceptive
system for endowing soft robots with a similar capability. As
schematically shown in Figure 1A, the neurological basis of
the human proprioceptive system originates from organs
called muscle spindles. The intrafusal muscle fibers enclosed
in the muscle spindles act as receptors that provide the in-
formation of the muscle length, while those extrafusal muscle
fibers form the units to generate force and movement. The
muscle spindles orient parallelly to the extrafusal muscle fi-
bers, so that the receptors are deformed when the extrafusal
muscle fibers lengthen or contract. Information of the body
posture is encoded by populations of these passively de-
formed receptors, generating nerve impulses to the spinal
cord and cerebral cortex for high-level processing.**~>°

By creating an analogy to the paralleled morphology of the
muscle fibers and its neurological basis, we presented a
bioinspired architecture (Fig. 1B) to endow a soft pneumatic
robot with proprioceptive capability. Particularly, we dem-
onstrated and validated the proposed architecture on three
degrees of freedom (3-DoF) soft continuum joint.

Differing from the popular usage of dedicated embedding
sensors, we proposed to use soft pneumatic chambers to serve
as receptors for sensing the body deformation, which can be
signaled by inner pressure changes. The soft actuators and soft
receptors are designed with unified bellows structure, which
have been explored by many previous studies.***>'>3 With the
actuators and receptors being parallelly arranged, the receptors
will be passively deformed when the actuators are pressurized.
The deformation can be signaled by the corresponding inner
pressure changes of the receptor chambers. All these pressure
information encode the system motion states. Inspired by the
muscle system that has highly redundant receptors, we pro-
posed to build redundant receptor segments in the soft system.
Learning-based approaches were explored to decode pressure
information for modeling system kinematics.
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FIG. 1. (A)Human proprioceptive system. (B) Overview of the proprioception architecture for soft robots and its analogy
to the human sense of proprioception. a — a, section view of the structure of the parallel soft pneumatic chambers. RNN,

recurrent neural network.

Compared with the state of the art, the primary contribu-
tion of this work is the idea of using soft pneumatic chambers
as receptors for encoding the deformation of the soft robot
system. Such a concept can be easily generalized to different
soft robot systems. Particularly, the receptors share the same
structural design with the actuators; therefore, off-the-shelf
technologies can be leveraged to fabricate them without
special treatment. The feedback from the actuators and re-
ceptors is the same type of pressure signals, which can be
easily obtained from readily-available and low-cost pneu-
matic pressure sensors commonly incorporated in most soft
robots. The learning algorithms proposed in this work are
directly fed with unified pressure data, while most of the
existing methods may require preprocessing of the data from
diverse sources. Another contribution is that we proposed
both the software and hardware level proposals for graceful
degradation, which enable the soft robots to maintain their
performance even when they suffer receptor failures.

Materials and Methods

The proposed approach was validated on a 3-DoF pneu-
matically actuated soft continuum joint. As shown in
Figure 1B, the soft continuum joint consisted of two plates

connected to seven distributed soft bellows, with one located at
the center and the other six spaced around the central one in a
circular array pattern. All the bellows were of an identical
structure design. The central bellows were designated as re-
ceptor, and the outer six bellows were alternately configured as
actuators and receptors, so that in total the joint system had
three actuators and four receptors.

The circular array configuration of the bellows created 3-DoF
motion by inflating the actuator bellows. As the actuator bellows
were pressurized, the receptor bellows were passively stretched
or compressed. All the bellows were connected to pressure sen-
sors for monitoring their inner pressure changes due to inflation or
body deformation. A motion capture system was leveraged for
providing the ground truth of the pose of the soft continuum joint.
RNN architecture was used for learning the mapping from the
sequential pressure signals to the pose of the soft continuum joint,
[p(), ()] — y(2). In this study, p(¢) is the pressure readings of
the bellows, c(?) is the current state of the RNN network, and y(¢)
is the kinematic parameters to be estimated.

Fabrication of the elastomeric bellows

The bellows body was fabricated following the molding
and casting process as shown in Figure 2A. All the molds
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FIG. 2. Fabrication and characterization of the pneumatic bellows chambers. (A) Schematic outlining of the elastomeric
bellows fabrication process. (B) An in-house developed test machine for characterization of the bellows chamber under
stretched deformation. (C) The pressure measurements of the bellows chamber under stretched deformation over 1000
cycles. The characteristics of the bellows chamber were repeatable and consistent across the long-term cycles. 3D, three-

dimensional.

were printed using a 3D printer. The molds were assembled
and held together firmly to form the chamber of the bellows.
Silicone elastomer was then poured into the mold, and the
molds were removed after the silicone rubber cured, creating
the bellows chamber. Finally, one open end of the bellows
chamber was capped by 3D printed flanges using adhesives.
The other open end was capped by a similar 3D printed flange
designed with a nozzle for connection of pneumatic tubes.

Characterization of bellows chamber under stretched
deformation

In response to stretched deformation, the bellows chamber
exhibited changes in the inner pressure. To characterize the
bellows chamber under stretched deformation, an in-house
developed stretch test machine (a linear motion platform dri-
ven by stepper motor) was used as shown in Figure 2B. In the
test, one flange of the soft bellows was mounted on the slider of
the linear motion platform, and the other flange was fixed and
connected to a pressure sensor (XGZP6847A040KPGPN,
Range: —40 to 40kPa, CFSENSOR Ltd.). We applied con-
trolled motion to stretch the bellows between 0 and 15 mm
(KPM16, 50mm max., MIRAN Ltd.) and simultaneously

recorded the pressure of the bellows. The stretch motion was
controlled at a specific rate (13.3 mm/s). In response to the
stretched length between O to 15 mm, the pressure of the
bellows varied from OkPa (unstretched) to above 12kPa
(at 15mm stretched length). The pressure measurements of
long-term test with over 1000 cycles are shown in Figure 2C.
The bellows chamber showed minimal hysteresis, and its
characteristics were reliable over the entire set of cycles.

Experimental setup

As shown in Figure 3A, we fixed one plate of the soft
continuum joint onto an aluminum-alloyed stand so that the
actuators could drive the other plate to move relative to the
fixed one. The ground truth of the pose of the active plate was
measured by a 6-DoF motion capture system composed of a
tracker and base station (NOLO CV1 PRO, NOLO Inc.). We
mounted the tracker at the center of the active plate and
placed the base station on the ground with the tracker located
into its positioning range.

A control system was developed for measuring the pres-
sures of all the bellows chambers and regulating the pressures
inside the actuators. A sequence of reference pressure values
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FIG. 3. (A) Experimental setup for sam-
pling data, training, and testing the kine-
matic model. (B) The kinematic description
of the soft continuum joint.

ranging from O to 20kPa was randomly generated by the
control board. The pressures inside the actuators were con-
trolled under a proportional-derivative rule. Since the motion
capture system measured the pose at 50 Hz, we also sampled
the pressure readings to 50 Hz.

Kinematic description and sampling

In our experiment, we described the movements of the soft
continuum joint relative to its initial pose when all the ac-
tuators were not pressurized. As illustrated in Figure 3B,
assume that the initial pose of the soft continuum joint was
obtained with position Py =[Pox Poy Po, ]T and rotation
Ry, and the pose of the soft continuum joint was recorded
with position P, =[Py Py Py ]T and rotation R, at time ¢,
the movement of the soft continuum joint relative to the
initial pose could be obtained

Py=[Pu—Po. Py—Po Pe—Poy]
and

rir riz r

t T
Ry=Ry'R,= |ryy rpn 1y
r3i1 rs 133

Particularly, the rotation motion could also be described by
Euler angles (yaw, pitch, roll). But the soft continuum joint
only had two rotational degrees of freedom, that is, pitch and
roll. Thus, the pitch angle f(¢) and roll angle o(f) were enough

to describe the rotation of the joint at time ¢, as could be
calculated from the rotation matrix Rj:

B(t) = atan2 ( — 31,4/ + ;%3) ,o(t) = atan2(r3p, 133 ).

In addition to the rotation parameters, the pose of the soft
continuum joint could be determined by one more parameter
that was the translational distance L(t)= ||P}|| =

\/ (Pi — Poy)* + (Py — Poy)2 + (P, — Py.)* for describing
the Cartesian position changes. Therefore, for this 3-DoF
joint, its kinematics could be described by a 3D parameter
y@)=[L(t) P o)]", which could be transformed from
the 6-DoF pose readings provided by the motion capture
system.

To collect data for training the models, the soft continuum
joint was actuated to different pose under random pressure
inputs while the pose information y(#) and the corresponding
pressure data p(f) were collected. The training data were
continuously collected when the soft continuum joint was
actuated without any external contact. For testing the model
performance with contact, the active plate of the continuum
joint was occasionally brought in contact at different loca-
tions and for different duration. The sampling rate of the
pressure and pose data was 50 Hz, and the whole sampling
period lasted about 10 min. In total, 30,000 pairs of pressure
(predictor) and pose (response) observations were collected.
A sequence of 24,000 pairs of pressure and pose observations
was used for training. Two sequences of 3000 pairs of
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pressure and pose observations that collected under non-
contact and contact scenario, respectively, were used for
testing the performance of the models.

RNNs for kinematics prediction

As the variants of neural networks, RNNs are excellent in
processing sequential data. Unlike other neural networks,
RNNGs infer the output based on both the input and the internal
state that memorizes the previous computations. Although
RNNs can theoretically be useful for sequential data, they
generally cannot be directly deployed due to the problem of
long-term dependency in model training. There are two
widely used architectures of RNNs which can alleviate the
problem of long-term dependency by introducing gate
mechanism: LSTM>* and gated recurrent unit (GRU? > ).

Long short-term memory. The structure of LSTM is
shown in Figure 4A. LSTM consists of three gates, that is,
forget gate, input gate, and output gate. At each step 7, the
current input p, and incoming short memory (i.e., the hidden
state h,_ of the previous step ¢ — 1) regulate the three gates
to control the removal and storage of the information. The
forget gate f; decides how much information from the in-
coming long-term memory (i.e., the cell state C,_; of the
previous step £ — 1) can be kept. The input gate i, controls
how much information of the input at the current step can be
retained in the long-term memory (i.e., the cell state C;). The
output gate o, takes the newly computed long-term memory
to generate new short-term memory (i.e., the hidden state #;).
The LSTM equations are the following:

WANG ET AL.

f, = sigmoid(Ws - [h¢_1,p,] + br) (1)

i = sigmoid(W; - [he_ 1, p,] +bi) )

C=f ®C_+i @ tanh(W, - [h_1,p]+bc)  (3)
oy = sigmoid(W, - [hy_ 1, p,] +bo) 4)

hy =0, ® tanh(C;) (5)

where ® denotes the Hadamard product operator; W, and b,
are the weight and bias parameters which need to be learned
during training.

Gated recurrent unit. Figure 4B shows the structure of
GRU. As a variation and simplification of LSTM, GRU in-
corporates only two gate mechanisms called reset gate and
update gate. The reset gate r; is used to decide how much of the
relevant information from the previous hidden step (i.e., h;_ 1)
should be stored into the current memory content (i.e., hy). The
update gate z, determines what to collect from the current
memory content and what information from the previous step
for calculating the new hidden state &, and passing it down to
the next step. The GRU equations are the following:

r, = sigmoid(W; - [h,_1,p,] +br) (6)
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7y = sigmoid(W, - [h,_1,p,] +b,) @)
h, = tanh(W; - [r, ® hy_ 1, p,] +b;) )
h=(1-2z)Oh_1+zOh )

where ® denotes the Hadamard product operator; W, and b,
are the weight and bias parameters which need to be learned
during training.

Using MATLAB’s Deep Learning Toolbox, both the net-
works of LSTM and GRU architecture were designed for
pose prediction with the pressure signal as input. As illus-
trated in Figure 4C, the network started with a sequence input
layer followed by an LSTM or GRU layer, which was con-
figured with 50 hidden units by considering the performance
and computation time (Supplementary Table S1). To prevent
overfitting and make predictions more robust to noise, a
dropout layer with dropout rate of 0.1 was specified preced-
ing the LSTM or GRU layer. The networks ended with a fully
connected layer and a regression layer. The training data were
normalized for a better fit and to prevent the training from
diverging. For comparison purpose, the networks were
trained with the same sets of hyperparameters. The networks
were trained on a single graphics processing unit (Nvidia
GeForce MX150) with Adam optimizer for a maximum of

500 epochs (as shown in Supplementary Fig. S1). The root
mean squared error (RMSE) of the prediction from the test
dataset was evaluated for each network.

Results
Kinematic modeling

With the trained models (both LSTM and GRU), the re-
ceptor pressure information could be used to predict the pose
of the continuum joint at each step. As shown in Figure 5, the
trained models were tested under both noncontact (from the
536th second to the 596th second) and random contact (from
the 756th second and 816th second) scenario.

The performance of the LSTM and GRU model is shown
in Table 1. On average, it took longer to train a LSTM model
(484 s) than GRU model (459 s) because LSTM network used
more training parameters. Overall, however, LSTM model
was more accurate than GRU model. The results showed that
LSTM model could provide effective prediction of pose
under noncontact scenario, with the RMSE of 1.10£0.02 mm
for predicting L, the RMSE of 0.62+0.05° for predicting f,
and the RMSE of 0.71+0.06° for predicting o. The GRU
model performed similarly in predicting L, while the accu-
racies of predicting f§ and o were worse. But the prediction
performance of both the LSTM and GRU model deteriorated
upon contact, with the RMSE over 2.3 mm for predicting L,
the RMSE over 1.9° for predicting f3, and the RMSE over 1.6°

TABLE 1. PERFORMANCE OF THE LONG SHORT-TERM MEMORY AND GATED RECURRENT UNIT NETWORK

Test performance (RMSE)

Noncontact Random contact
Models  Training time (seconds) L (mm) P (deg) o (deg) L (mm) P (deg) o (deg)
LSTM 484.0+1.7 1.10+£0.02 0.62+0.05 0.71£0.06 2.33+£0.02 191+£0.19 1.66=0.21
GRU 459.0+6.1 1.11£0.01 1.04+£030 0.93£0.26 2.31£0.03 1.97+0.37 1.77£0.09

The data are shown as mean * standard deviation. The bold values denote the best performance of each metric.
GRU, gated recurrent unit; LSTM, long short-term memory; RMSE, root mean squared error.
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FIG. 6. Pose prediction for a period of 20s. (A) Noncontact scenario. (B) Random contact scenario.

for predicting o. In this work, accuracy was the first concern;
therefore, we chose LSTM network for predicting the pose.

Figure 6 shows the trajectories of the measured and pre-
dicted pose of the continuum joint for a period of 20 s using
LSTM model. The corresponding error plots for both non-
contact and random contact scenario are shown in Figure 7.
The prediction of the translational distance (L) and rotation (f3
and o) was affected obviously by external contact.

Receptor failure

Soft robots may suffer from body segment failures due to
fatigue aging, mechanical damage, or environmental corro-

sion. For example, the receptor chamber made of silicon
rubber may be punctured by sharp objects and the pressure
reading of the receptor will drop to zero. In such cases, the
receptor’s information for prediction will be lost.

In this study, we performed some tests to investigate the
robustness of the LSTM model in the face of receptor
failures. In the test, we set the receptor pressure readings to
zero for simulating the corresponding receptor failure. The
performance of the LSTM model in response to receptor
failures is shown in Figure 8A and B. Under both non-
contact and random contact scenario, the prediction accu-
racy gradually decreased with more and more receptor
failures.
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FIG. 7. Error plots of pose prediction. (A) Noncontact scenario. (B) Random contact scenario.
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(C) Prediction error distribution of tracker position under noncontact scenario. RMSE, root mean squared error.

Effect of receptor layout

Each receptor appeared to contribute differently to the pre-
diction accuracy, which was associated with the receptor lay-
out. For example, the failure of the central receptor (receptor 1)
had small and equal influence on the prediction accuracy of L,
f, and a under both noncontact and random contact scenario.
Failure of receptor 2 had great impact on the prediction accu-
racy of f§ but it brought less impact on the accuracy of L and o.
The prediction accuracy of o was considerably affected by the
failure of receptor 3. However, the accuracy of L and f was
affected a little when the information of receptor 3 was lost.
Failure of receptor 4 evenly reduced the prediction accuracy of
f and o, but had a relatively small effect on the prediction of L.

This effect could also be observed from prediction error
distribution of the tracker position in the workspace as shown
in Figure 8C. The prediction error of tracker position in-
creased when there were receptor failures. Most importantly,
the error distribution showed that receptor failures brought
different impact on the tracker position prediction in different
regions of the workspace. For example, as failure of receptor
2 caused large error in prediction of pitch angle f3, the pre-
diction error of tracker position in the region along the pitch
motion would become larger. Similarly, failure of receptor 3
caused larger error in the region along the rolling motion
compared to other regions in the workspace.

Effect of actuator information

We also trained a model with the pressure information of
all the receptors and the three actuators. Compared with the
model only using the receptor information, this model per-
formed better in predicting pose under noncontact scenario
but worse under random contact scenario. The performance
of the model in response to receptor failures is shown in
Figure 9A and B. Similar degradation in the performance
could be observed under both the noncontact and random
contact scenario. But the model using actuation information
suffered less loss in prediction accuracy when receptor fail-
ures occurred. This indicated that the actuation information
played an important role in proprioception and helped com-
pensate the loss caused by receptor failures.

Graceful degradation

Graceful degradation is the ability of a computer, ma-
chine, or electronic system to maintain at some reduced
level of performance after a portion of its components fail.
The purpose of graceful degradation, ideally, is to prevent
complete system failure and reduce downtime. Graceful
degradation is an important consideration in the design and
implementation since soft robots might suffer damage from
environment due to the ‘“‘soft” property. Software and
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FIG. 9. Effect of actuator information on pose prediction. (A) Noncontact scenario. (B) Random contact scenario.

hardware methods could be combined to achieve graceful
degradation.

Receptor failures would cause loss of partial input infor-
mation. For a model trained by feeding the dataset with
complete input information, it might fail to handle the sce-
narios with only partial input, thus causing the bad perfor-
mance of prediction. We proposed a software level method to
alleviate the impact of the partial input information loss. In
addition to the model trained with pressure input of all four
receptors (denoted as M,34), we also pretrained models with
pressure input of a part of receptors. Four pretrained models
M>34, Mi34, Mi24, M1p3 were developed when pressure in-
formation of only three receptors was used, and six pretrained
models M3q, Myy, Mys, M14, M13, M1, were developed when
pressure information of only two receptors was used.
Therefore, in total 11 pretrained models were available and
saved for use in the task. Table 2 presents the performance of
the pretrained models.

Figure 10A shows a flow chart representing the algorithm
for achieving graceful degradation based on the pretrained
models. Starting with model M,34, the system was able to
recover from a receptor failure by switching to the model

which was trained without using the pressure information of
the failed receptor. For example, when receptor 2 failure was
detected by the system, the system could switch to use model
M 34. Figure 10B and C shows the scenario of receptor 2
failure and how the system responded to the receptor failure.
After receptor 2 failure, the system performed poorly in
predicting the pose if the system kept using model Mjz34
while the system could maintain the performance by
switching to model M 34. This was because model M;34 was
trained without using the pressure information of receptor 2;
it could continue to run using the pressure information of
receptors 1, 3, and 4 to predict the pose.

The hardware level solution for graceful degradation was to
introduce redundancy in receptors. As shown in Table 2, with
one receptor failure, the system could still function well based
on the remaining three receptors using the pretrained models.
But if the system was damaged with less than three receptors
left, pretrained models had limited ability to recover. Thus,
designing the soft system with redundant receptors would be
practical and conducive to system robustness. In practical
applications, software and hardware methods could be com-
bined for graceful degradation.

TABLE 2. PERFORMANCE OF PRETRAINED MODELS FOR GRACEFUL DEGRADATION

Pretraining Test performance (RMSE)
Noncontact Random contact
Input Model L (mm) P (deg) o (deg) L (mm) P (deg) o (deg)
1,p2,p3,p4) M3 1.10 £ 0.02 0.62 = 0.05 0.71 £ 0.06 2.33 £ 0.02 1.91 £ 0.19 1.66 + 0.21
0,p2,P3,P4) M3y 1.11 + 0.01 0.80 = 0.38 0.89 + 0.35 2.38 + 0.04 2.04 + 0.81 1.92 + 0.45
gl,o p;,p4§ M3 1.10 £ 0.01 0.89 = 0.22 0.73 £ 0.18 2.36 = 0.01 2.11 = 0.66 1.63 £ 0.41
1,02,0,ps M4 1.10 + 0.01 0.99 + 0.24 1.03 £ 0.12 2.34 +0.02 2.59 £ 0.22 2.09 £ 0.14
1,p2,p3, ) My 1.12 £ 0.02 0.87 £ 0.22 0.82 £ 0.21 2.31 £ 0.01 2.65 £ 0.12 2.14 £ 0.11
0,0,p3,p4) M3y 1.37 £ 0.04 2.16 £ 0.10 1.04 + 0.02 2.54 £ 0.02 2.85 +0.18 1.95 + 0.02
éO ,02,0,p4) Moy 1.14 £ 0.01 1.01 £ 0.11 1.66 + 0.08 2.34 = 0.03 2.27 £ 0.13 2.62 = 0.08
0,p2,p3,0) M3 1.82 £ 0.04 1.68 + 0.12 2.08 + 0.12 2.73 £ 0.08 2.68 =+ 0.15 247 +0.17
<Qp)1,0 0, p4g My 1.20 £ 0.02 2.18 £ 0.11 242 +0.14 2.59 £ 0.02 2.62 £ 0.10 3.05 £ 0.01
1,0,p3,0 M3 1.30 + 0.01 3.35+0.28 1.20 + 0.06 2.31 £ 0.04 4.26 + 0.15 149 £ 0.35
(p1,p2,0,0) My, 1.61 £ 0.07 1.49 £ 0.07 3.34 £ 0.26 2.66 = 0.12 2.63 £ 0.09 392 +0.15

The data are shown as mean = standard deviation. The bold values denote the mean.
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FIG. 10. (A) Flow chart of graceful degradation based on pretrained models. (B) System response to receptor 2 failure

without graceful degradation strategy. (C) System response to receptor 2 failure with graceful degradation strategy.

Conclusion and Caveats

This article presented a novel scheme for endowing soft
robots with proprioception using soft body encoding and
deep learning tools. The concept was inspired by the struc-
tural and neurological basis of the human muscular system.
We demonstrated the proposed concept on a 3-DoF bellows-
driven continuum joint with redundant soft body receptors.
Both LSTM and GRU architectures were designed to train the
kinematic model for the 3-DoF continuum joint, mapping the
sequential pressure readings to body pose. The accuracies of
the models were validated under both noncontact and contact
scenarios. We demonstrated that the model trained by com-
bining both the receptor and actuator information was more
robust in the face of receptor failures. In addition, the re-
dundancy of the receptors contributed to maintaining system

function in the event of receptor failures. Finally, both
hardware and software level methods were proposed to allow
the continuum joint to achieve graceful degradation after
receptor failures.

The soft receptor concept presented in this study was
demonstrated with bellows chambers. Such bellows structure
was considered because of its high sensitivity in response to
stretched or compressed deformation. However, the bellows
structure showed anisotropic compliance. For example, the
bellows chamber was not very sensitive to bending defor-
mation. Thus, other potential designs of the chamber struc-
ture should be investigated in the future. But the concept of
detecting deformation by measuring chamber pressure
changes is generalizable.

Kinematic modeling was purely based on a learning ap-
proach in this work, without accurate characterization of the
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system and precision fabrication of the receptors. Although
deep learning tools provide parallel paths to analytical
modeling and have produced promising results, there remain
several challenges to overcome and unknowns to explore. In
this work, the RNNs could successfully learn the mapping
between the pressure inputs and the pose of the continuum
joint. However, the RNNs failed to identify some exact fea-
tures of the system, such as the specific effects of the number
and the layout of the receptors on the pose estimation.
Therefore, if a new system was designed with different re-
ceptor configurations (different number or different layout of
the receptors), data sampling and retraining of the RNNs
would be required.
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